Label-free spatio-temporal monitoring of cytosolic mass, osmolarity, and volume in living cells
- Abstract number
- 1451
- Event
- European Microscopy Congress 2020
- DOI
- 10.22443/rms.emc2020.1451
- Session
- LSA.1 - Label-free life science imaging
- Authors
- Daniel Midtvedt (3), Erik Olsén (1), Fredrik Höök (1), Gavin Jeffries (2)
- Affiliations
-
1. Chalmers University of Technology
2. Fluicell AB
3. Gothenburg University
- Abstract text
Microorganisms adapt their biophysical properties in response to changes in their local environment. However, quantifying these changes at the single-cell level has only recently become possible, largely relying on fluorescent labeling strategies. In this work, we utilize yeast (Saccharomyces cerevisiae) to demonstrate label-free quantification of changes in both intracellular osmolarity and macromolecular concentration in response to changes in the local environment. By combining a digital holographic microscope with a millifluidic chip, the temporal response of cellular water flux was successfully isolated from the rate of production of higher molecular weight compounds, in addition to identifying the produced compounds in terms of the product of their refractive index increment (dn/dc) and molar mass. The ability to identify, quantify and temporally resolve multiple biophysical processes in living cells at the single cell level offers a crucial complement to label-based strategies, suggesting broad applicability in studies of a wide-range of cellular processes. [1]
- References
[1] Midtvedt, D., Olsén, E., Höök, F. et al. Label-free spatio-temporal monitoring of cytosolic mass, osmolarity, and volume in living cells. Nat Commun 10, 340 (2019). https://doi.org/10.1038/s41467-018-08207-5